skip to main content


Search for: All records

Creators/Authors contains: "Cao, Ye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metallic zinc (Zn) has been considered one of the most promising anode materials for next-generation aqueous Zn batteries due to its low redox potential and high storage capacity. However, excessive dendrite formation in Zn metal, corrosion, the evolution of hydrogen gas during the cycling process, and the poor Zn-ions (Zn2+) transport from the electrolyte to the electrode limits its practical application. One of the most effective strategies to suppress Zn dendrite growth and promote Zn2+ transport is to introduce suitable protective layers between the Zn metal electrode and the electrolyte. Herein, we mathematically simulated the dynamic interactions between the Zn deposition on the anode and the resulting displacement of a protective layer that covers the anode, the latter of which can simultaneously inhibit Zn dendrite growth and enhance the Zn2+ transport through the interface between Zn anode and the protective layer. Our simulation results indicate that a protective layer of high Zn2+ diffusivity not only improves the deposition rate of the Zn metal but also prevents the dendrite growth by homogenizing the Zn2+ concentration at the anode surface. In addition, it is revealed that the anisotropic Zn2+ diffusivity in the protective layer influences the 2D diffusion of Zn2+. Higher Zn2+ diffusivity perpendicular to the Zn metal surface inhibits the dendrite growth, while higher diffusivity parallel to the Zn metal surface promotes dendrite growth. Our work thus provides a fundamental understanding and a design principle of controlling anisotropic Zn2+ diffusion in the protective layer for better suppression of dendrite growth in Zn metal batteries. 
    more » « less
    Free, publicly-accessible full text available December 27, 2024
  2. Abstract

    Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+diffusion barrier. We elucidate the correlation among Li+transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

     
    more » « less
  3. Abstract

    Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available May 3, 2024
  5. The freestanding ferroelectric membranes with super-elasticity show promising applications in flexible electronic devices such as transducers, memories, etc. While there have been recent studies on the effect of mechanical bending on the domain structure evolutions and phase transitions in ferroelectric membranes, its influence on Young's modulus of these freestanding membranes is less explored, which is crucial for the design and application of flexible electronics. Here, a phase-field model is developed to simulate the tunability of Young's modulus of freestanding Ba1−xSrxTiO3 membranes under mechanical bending. It is demonstrated that the bended membrane shows a uniform Young's modulus compared with unbended membrane. By increasing the bending angle, Young's modulus tunability is enhanced, which can be attributed to the vortex-like domain structures induced by the mechanical bending. These vortex-like domains with large domain wall energy inhibit the subsequent domain switching under externally applied tensile strain and reduce the eigenstrain variation, which leads to a large Young's modulus. In addition, the formation of vortex domain structure is suppressed with increasing Sr2+ content in Ba1−xSrxTiO3 membranes at the same bending degree, resulting in a decrease in Young's modulus tunability. Our work reveals that the tunability of Young's modulus of freestanding ferroelectric membranes can be achieved by mechanical bending, which provides guidance for designing flexible electronic devices. 
    more » « less
  6. Abstract

    We developed a physical model to fundamentally understand the conductive filament (CF) formation and growth behavior in the switching layer during electroforming process in the metal-oxide-based resistive random-access memories (RRAM). The effects of the electrode and oxide layer properties on the CF morphology evolution, current-voltage characteristic, local temperature, and electrical potential distribution have been systematically explored. It is found that choosing active electrodes with lower oxygen vacancy formation energy and oxides with small Lorenz number (ratio of thermal and electrical conductivity) enables CF formation at a smaller electroforming voltage and creates a CF with more homogeneous morphology. This work advances our understanding of the kinetic behaviors of the CF formation and growth during the electroforming process and could potentially guide the oxide and electrode materials selection to realize a more stable and functional RRAM.

     
    more » « less
  7. Abstract

    All‐solid‐state Li‐metal batteries (ASLMBs) represent a significant breakthrough in the quest to overcome limitations associated with traditional Li‐ion batteries, particularly in energy density and safety aspects. However, widespread implementation is stymied due to a lack of profound understanding of the complex mechano‐electro‐chemical behavior of Li metal in the ASLMBs. Herein, operando neutron imaging and X‐ray computed tomography (XCT) are leveraged to nondestructively visualize Li behaviors within ASLMBs. This approach offers real‐time observations of Li evolutions, both pre‐ and post‐ occurrence of a “soft short”. The coordination of 2D neutron radiography and 3D neutron tomography enables charting of the terrain of Li metal deformation operando. Concurrently, XCT offers a 3D insight into the internal structure of the battery following a “soft short”. Despite the manifestation of a “soft short”, the persistence of Faradaic processes is observed. To study the elusive “soft short” , phase field modeling is coupled with electrochemistry and solid mechanics theory. The research unravels how external pressure curbs dendrite growth, potentially leading to dendrite fractures and thus uncovering the origins of both “soft” and “hard” shorts in ASLMBs. Furthermore, by harnessing finite element modeling, it dive deeper into the mechanical deformation and the fluidity of Li metal.

     
    more » « less